INVITE

Optimization Procedure for Hot Melt Extrusion as a Continuous Manufacturing Technique for Amorphous Solid Dispersions Tobias Gottschalk^{1,2}, Cihangir Özbay¹, Tim Feuerbach¹, Markus Thommes¹

¹TU Dortmund, Laboratory of Solids Process Engineering, Emil-Figge-Straße 68, 44227 Dortmund, Germany ² INVITE GmbH, Drug Delivery Innovation Center, Chempark Building W32, 51368 Leverkusen, Germany Email: Tobias.Gottschalk@tu-dortmund.de

Introduction

Critical Process Parameter

Rotational speed

Barrel temperature

Mass flow rate

Extruder setup

- Barrel configuration
- Screw configuration
- Die geometry

Figure 5. Barrel, screw, die.

TELEVICE

This work shall provide insights into the optimal selection of an operating point. Therefore, a two-step optimization procedure (Scale Independent Optimization Strategy, SIOS applied for different polymers from [2]) was pharmaceutical research. Additionally, a upstream granulation step was applied for one polymer to investigate the influence of the bulk properties of the polymers.

Materials and Methods

- Copovidone, PVPVA (Plasdone S-630, Ashland, Schaffhausen, Switzerland)
- Eudragit EPO, aPBMA (Evonik, Darmstadt, Germany)
- Granulated Copovidone, granPVPVA

Results and Discussion

4 Optimized operating point

Figure 8. Schematic SIOS with exemplarily values. (Mass flow rate \dot{m} , rotational speed n, SFL = $d^3 \cdot n \cdot \rho$ screw diameter d, density p.)

Table 1. Bulk properties and results of the SIOS for the different polymers.

	Bulk	Тар	Flowahility	SEI	m
Substance	density	density	г тоvvability		lka h-1 l
	[g ml-1]	[g ml-1]	[-]	[-]	[kg II ·]
SOL	0.597	0.656	Excellent	0.0681	42
PVPVA	0.315	0.409	Passable	0.0309	30
aPBMA	0.339	0.418	Fair	0.0405	36
granPVPVA	0.451	0.575	Passable	0.0371	36

Differences

Similarities

Figure 9. residence time over material temperature.

- SIOS (including autogenic extrusion) suitable for all polymers
- Temperature decrease when autogenic extrusion is started
- No visible degradation at any point
- Final limitation caused by the dosing device

- $SFL_{max} \rightarrow low bulk density and flowability leads to low <math>SFL_{max}$
- Temperature at similar conditions \rightarrow Autogenic extrusion is leading to different viscosities
- \dot{m}_{max} \rightarrow low bulk density and flowability leads to low maximal mass flow rates
- Granulation step can improve SFL_{max} and maximal mass flow rate

CONCLUSION

In the present work it was shown that the selection of polymer for a HME has major influence on the process and the optimized operating point. Especially the bulk properties of the polymers should be kept in mind. Otherwise, an additional granulating step is a suitable upstream process for a maximized loading and throughput.

References: [1] *https://www.leistritz.com* (*status: Jan. 22nd 2020*)

[2] Wesholowski, J., et al.. Scale-Up of pharmaceutical Hot-Melt-Extrusion: Process optimization and transfer. Eur. J. Pharm. Biopharm. 2019

2nd APV Continuous Manufacturing Conference, February 18 – 19th 2020, Freiburg