

On-line measurement of granule size distribution by dynamic image analysis in a continuous manufacturing line

A. Wilms^{1,2}; P. Kleinebudde²

¹ INVITE GmbH, 51373 Leverkusen, Deutschland
² Inst. of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, 40225 Düsseldorf, Germany e-mail: wilms@invite-research.com; phone: +49 211 8114251

Introduction

The granule size distribution (GSD) is a critical quality attribute in the process of granulation. Within the context of continuous manufacturing it is therefore desired to monitor the current granule size during manufacturing. Dynamic image analysis is a well-established process to determine GSD and beneficial for material that was produced using roll compaction/dry granulation (RCDG) as it not only measures the granule size but also parameters such as shape factors. Furthermore, it is a non-destructive analytical tool and it is therefore to measure the size of granules and then join them with the nonmeasured fraction to maximize material output.

Materials and Methods

The outlet of a roll compactor (BRC 25, L.B. Bohle GmbH, D) was linked to a rotating tube sample divider (manufactured by the Heinrich Heine Universities fine mechanics, Figures 1 and 2). The rotating tube rotated at 49 rpm. Passing by the sample opening, material is sampled from full product stream at every rotation. About 10% of the material was sampled. The material that was not sampled was collected in a vessel underneath the outlet of the compactor. This mass was tracked every 5 seconds using a balance (Sartorius AG, D) and corresponding software (SartoConnect, Sartorius AG, D).

Image analysis was conducted using Haver CPA 2-1 (Haver&Boecker, D). It scans particles using a line scan camera with a frequency of 50 million pixel-scans per second. The moving average of the size parameters D50, D75 and D90 were written into a .csv file every 30 seconds.

Dibasic calcium phosphate anhydrate (DiCaFos® A 150, Budenheim, D) was chosen as excipient.

RCDG using 6 kN/cm specific compaction force, a 2 mm gap width and a 1.5 mm rasp sieve was performed. A rotating tube sample divider was used to split 18% of produced material as a sample. Through a funnel, this material was directly entered into Haver CPA and measured. Every 60 seconds, the average of measured particle sizes was tracked. For one minute, a sample of the main fraction was collected and measured.

Figure 1. the rotating tube sample divider

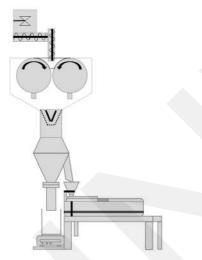


Figure 2. experimental set-up

Results

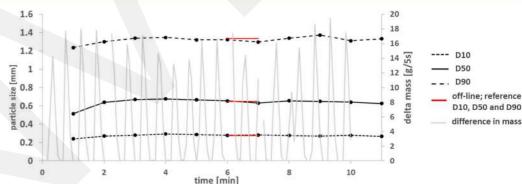


Figure 3. Plot of size parameters against time (mean over 30 seconds). Difference of mass every 5 seconds against time in grey. n=1; on-line data. Red = off-line data of sample taken between minutes 6 and 7, n=3; mean.

Figure 3 shows on-line results of the GSD parameters D10, D50 and D90 against time. The values are nearly constant for the shown 10 minute run. The off-line samples align well with on-line data. The difference in mass recorded highlights the systems fluctuating throughput. At low roll speeds, a ribbon is manufactured and only breaks upon entering the milling unit. A Fast Fourier Transform (FFT) shows a peak at 0.035 Hz (Figure 4) which equals to a surge in material about every 28 seconds. These fluctuations are not seen in on-line results as they are displayed as the mean of all individual scans over a period of 30 seconds. After stopping the process at minute 10, there was still product in the measurement system for analysis. Hence, a data point was registered after stopping the process (Figure 3, minute 12).

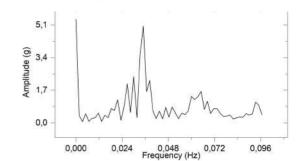


Figure 4. Fast Fourier Transformation (FFT) data: amplitude against frequency plot of the mass variation, n=1.

Conclusion

The used set-up was able to determine the GSD of resulting granules in accordance to off-line measurements. Values did not fluctuate strongly during the measurement. The speed of measurement has to be optimized in order to analyze all material in real-time and avoid accumulation of granules in the analyzer. The fluctuation of throughput has to be kept in mind for further experiments.

Acknowledgement

The authors thank the Drug Delivery Innovation Center (DDIC) for financial support and providing the scientific network.